CORC REPORT 2003 - 01 Set covering problems and Chvátal - Gomory cuts ∗

نویسندگان

  • Daniel Bienstock
  • Mark Zuckerberg
چکیده

Consider a 0/1 integer program min{c T x : Ax ≥ b, x ∈ {0, 1} n } where A is nonnegative. We show that if the number of minimal covers of Ax ≥ b is polynomially bounded, then there is a polynomially large relaxation whose value is arbitrarily close to being at least as good as that given by the rank-r closure, for any fixed r. A special case of this result is that given by set-covering problems, or, generally, problems where the coefficients in A and b are bounded.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

High Degree Sum of Squares Proofs, Bienstock-Zuckerberg hierarchy and Chvátal-Gomory cuts

Chvátal-Gomory (CG) cuts captures useful and efficient linear programs that the boundeddegree Lasserre/Sum-of-Squares (sos) hierarchy fails to capture. We present an augmentedversion of the sos hierarchy for 0/1 integer problems that implies the Bienstock-Zuckerberghierarchy by using high degree polynomials (when expressed in the standard monomial ba-sis). It follows that fo...

متن کامل

Embedding Cuts in a Branch & Cut Framework : a Computational Study with { 0 , 12 } - Cuts

Embedding cuts into a Branch&Cut framework is a delicate task, the main so when the implemented separation procedures are very successful and do produce a large set of violated cuts. In this case, it is of crucial importance to balance between the benefits deriving from a tighter (but larger) LP relaxation, and the overhead introduced for its solution. In this paper we describe a separation heu...

متن کامل

Improving Integrality Gaps via Chvátal-Gomory Rounding

In this work, we study the strength of the Chvátal-Gomory cut generating procedure for several hard optimization problems. For hypergraph matching on k-uniform hypergraphs, we show that using Chvátal-Gomory cuts of low rank can reduce the integrality gap significantly even though Sherali-Adams relaxation has a large gap even after linear number of rounds. On the other hand, we show that for oth...

متن کامل

Strengthening Chvátal-Gomory cuts and Gomory fractional cuts

Chvátal-Gomory and Gomory fractional cuts are well-known cutting planes for pure integer programming problems. Various methods for strengthening them are known, for example based on subadditive functions or disjunctive techniques. We present a new and surprisingly simple strengthening procedure, discuss its properties, and present some computational results.

متن کامل

Lower Bounds for Chvátal-gomory Style Operators

Valid inequalities or cutting planes for (mixed-) integer programming problems are an essential theoretical tool for studying combinatorial properties of polyhedra. They are also of utmost importance for solving optimization problems in practice; in fact any modern solver relies on several families of cutting planes. The Chvátal-Gomory procedure, one such approach, has a peculiarity that differ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003